

Controlling Information Aggregation for Complex Question Answering

Heeyoung Kwon, Harsh Trivedi, Niranjan Balasubramanian Stony Brook University, New York USA

Peter Jansen, Mihai Surdeanu University of Arizona, Arizona USA

Motivation

Drift-Sensitive PageRank

We model complex question answering as a task of aggregating related facts in a knowledge graph.

Problem

Aggregating facts leads to "inference drift", where long chains of facts quickly drift off topic.

Unsupervised Estimation

Solution

Drift-sensitive PageRank, random walk algorithm for QA graph traversal.

Q. Which	muscle is us	sed for	walking	? (A)	<u>heart</u>	<i>(B)</i>	calf
•		J	U	. /			

Supervised PageRank: Parameterization

$$\pi^{(t+1)} = (1-d)A_{\phi}\pi^t + dv_{\theta}$$

Transition Probability from edge features

$$v_{\theta}(s) = \frac{f_{\theta}(x_s)}{\sum_{u \in G} f_{\theta}(x_u)}$$

Blue	Question lerms
Green	Correct answer choice
Pink	Incorrect answer choice
White	Other concepts from OpenIE (Open Information Extraction)
Red	The node introducing inference drift

Seed Probability from node features

$$\phi(s,t) = \frac{g_{\phi}(z_{st})}{\sum_{e_{sq} \in G} g_{\phi}(z_{sq})}$$

Drift-sensitive PageRank

method	seeds	teleportation	test	reference
page rank	none	uniform	35.51	
TPR	uniform	uniform	38.26	
	focus	uniform	40.33	(A)
drift-sensitive	focus	quest. sim.	41.49	(B)
	sup.	sup.	42.34	Sup.

A

- Drift-sensitive variants of PageRank allow for effective reasoning over large graphs by controlling the random walks
- Drift-sensitive methods achieve substantial gains over standard topic-sensitive PageRank

Different Graph Sizes

method	top 10	top 20	top 30	top 40	top 50
TPR	39.54	40.63	41.31	38.26	38.68
unsupervised	41.00	41.55	42.46	40.33	39.84
supervised	41.30	42.22	41.80	42.34	42.40

Utility of Aggregation

method	sent	sent + (A)	sent + (B)	sent + Sup.	
accuracy	43.44	44.30	45.58	45.45	

language understanding & reasoning